152
Measuring biodiversity is crucial for understanding ecosystem health. Whilst prior works have developed machine learning models for taxonomic classification of photographic images and DNA separately, in this work, we introduce a multimodal approach combining both, employing CLIP's methodology to align images, DNA barcodes, and textual data in a unified embedding space. This allows for accurate classification of both known and unknown insect species without task-specific fine-tuning, leveraging contrastive learning for the first time to fuse DNA and image data. Our method surpasses previous single-modality approaches in accuracy by over 11\% on zero-shot learning tasks, showcasing its effectiveness in biodiversity studies.
Article ID: 2024 GL5
Month: May
Year: 2024
Address: Online
Venue: The 37th Canadian Conference on Artificial Intelligence
Publisher: Canadian Artificial Intelligence Association
URL: https://caiac.pubpub.org/pub/9i1cr7ot