n software security and reliability, automated vulnerability detection is an essential and compulsory task. Software needs to be tested and checked before it goes to the client for production. As technology changes rapidly, source code is also becoming massive. Thus the adequate accuracy of automated vulnerability detection has become very important to produce secure software and remove security concerns. According to previous research, a deep and recurrent neural network model can not satisfactorily test accuracy to detect all vulnerabilities. In this paper, we introduce experimental research on Bidirectional Encoder Representations Transformers (BERT), a state-of-the-art natural language processing model aimed to improve test accuracy, contributing to updates to the development of deep layers of the BERT model. As well, we balance and fine-tune the dataset of the model with improved parameters. This combination of changes achieves new levels of accuracy for the BERT model, with 99.30\% test accuracy in detecting source code vulnerabilities. We have made our balanced dataset and advanced model publicly available for any research purposes.
Article ID: 2022L2
Month: May
Year: 2022
Address: Online
Venue: Canadian Conference on Artificial Intelligence
Publisher: Canadian Artificial Intelligence Association
URL: https://caiac.pubpub.org/pub/gdhb8oq4